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Abstract
The entanglement entropy of a pure quantum state of a bipartite system is
defined as the von Neumann entropy of the reduced density matrix obtained by
tracing over one of the two parts. Critical ground states of local Hamiltonians
in one dimension have an entanglement entropy that diverges logarithmically
in the subsystem size, with a universal coefficient that is is related to the central
charge of the associated conformal field theory. Here I will discuss recent
extensions of these ideas to a class of quantum critical points with dynamic
critical exponent z = 2 in two space dimensions and to 2D systems in a
topological phase. The application of these ideas to quantum dimer models
and fractional quantum Hall states will be discussed.

PACS numbers: 03.67.Mn, 11.25.Hf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The entanglement of macroscopic systems measures non-local correlations of a uniquely
quantum mechanical nature. Quantum mechanical entanglement is defined in terms of
observing the state of a (large) subsystem of a much larger system, which will be assumed
to be in a pure quantum state. The entanglement entropy is a quantitative measure of these
non-local quantum correlations.

Let � be a macroscopic quantum system, i.e. a system with a thermodynamically large
number of degrees of freedom, and A be a (macroscopically large) subsystem, A ∈ �. Let
B be the complement of A, such that A and B constitute a partition of �: A

⋃
B = � with

A
⋂

B = ∅, and � their common boundary. Let us consider a pure quantum state |�〉 (suitably
normalized 〈�|�〉 = 1) of the macroscopic system defined on the whole region �. For this
pure state, the reduced density matrix for region A, ρA, and region B, ρB , are the Hermitian
operators

ρA = trB |�〉〈�|, ρB = trA|�〉〈�|, (1.1)
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where trA and trB denote the trace over the degrees of freedom on A and B, respectively. The
reduced density matrices ρA and ρB obey the obvious normalization conditions

trAρA = trBρB = 1. (1.2)

Under these circumstances, the subsystems A and B are in a mixed quantum state defined by
their reduced density matrices.

From their definition, it follows that the density matrices are Hermitian operators
whose eigenvalue spectra,

{
λA

n

}
and

{
λB

n

}
(respectively), are positive and lie in the range,

0 � λA
n , λB

n � 1. Here n is a complete set of labels of the spectrum of eigenstates of each
reduced density matrix. Thus, the eigenvalues are the probabilities of finding region A in a
given eigenstate of its reduced density matrix ρA.

With the above definitions, the von Neumann entanglement entropy SA for observing
region A is given by

SA = −trA (ρA ln ρA) = −
∑

n

λA
n ln λA

n (1.3)

and the same for subsystem B. The von Neumann entropy has the important symmetry property:
SA = SB , which holds provided � is in pure state |�〉. On the other hand, if the two
subsystems A and B are physically separate, the wavefunction factorizes into two (pure) states
with support in A and B respectively: |�〉 = |�A〉 ⊗ |�B〉. In this case, and only in this case,
the entanglement entropy vanishes, SA = SB = 0, as each subsystem is in a precisely known
pure state.

The standard notions discussed above are simple to realize in the context of small quantum
mechanical systems. Thus, for a simple system of just two spin 1/2 degrees of freedom in
the singlet state |�〉 = (1/

√
2) (|↑,↓〉 − |↓,↑〉), the probability of measuring the left spin in

state |↑〉(|↓〉) is 1/2 (1/2). For this trivial case the entanglement entropy of the left spin (part
of this singlet state) is (quite obviously) S = ln 2.

However, in the case of macroscopic systems as well as for quantum field theories, the
general behavior of the entanglement entropy is far less obvious and, except in very simple
cases, this entropy has a complex behavior. It is a non-local property of the wavefunction as a
whole of a system with an infinite number of degrees of freedom. There are several reasons for
being interested in such a non-local property of the wavefunction. In principle, in a local field
theory, one expects that the behavior of local operators should yield a complete picture of its
possible behaviors. However, the wavefunction of a quantum mechanical system (including
a quantum field theory) contains non-local behaviors which are encoded in the entanglement.
Such non-local information underlies the degree of difficulty of computing the wavefunction
of an extended system when starting from some simple ansatz usually based on simple local
properties.

The entanglement entropy in principle depends not only on the intrinsic parameters of the
theory, encoded in the local Lagrangian, but also on the size and shape of the region being
observed. Let us consider the problem of the scaling of quantum entanglement as the region
that is being observed becomes macroscopically large. Let L be the linear size of the entire
system, and LA the linear size of the observed subsystem (A), where we will be interested
in the regime L 
 LA 
 a, where a is a short distance scale (the ‘UV cutoff’). It has
been known for quite a long time [1, 2] that free massive relativistic field theories in d + 1
spacetime dimensions obey a so-called area law, i.e. a scaling of the entanglement entropy
of the form SA = const (LA/a)d−1, which scales with the area of the boundary of region A,
instead of a volume scaling as with the thermodynamic entropy. Indeed, the main motivation
of the early interest in the area law was the formal analogy between the area law behavior
of the entanglement entropy and the Bekenstein–Hawking entropy of a black hole [3, 4]
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SBH = kBA/4�2
P , where kB is the Boltzmann constant, A is the area of the event horizon of the

black hole and �P =
√

Gh̄/c3 is the Planck length (G being Newton’s universal gravitation
constant). However, while in the general relativity context the prefactor of the area law is
universal, in the case of the entanglement entropy it is not as it depends on the choice of the
short distance cutoff a. At any rate, the area law of the scaling of the entanglement entropy
holds for any local field theory1.

In this paper we will discuss the problem of universality in the scaling behavior of the
entanglement entropy. Having noted above that, in general, for a local quantum field theory
the leading behavior is an area law with a non-universal coefficient2, we will be interested
on whether the entanglement entropy may have universal sub-leading terms, i.e. universal
corrections to the area law. For a generic local theory universality is not expected unless the
field theory itself is scale invariant. In other terms, the quantum field theory must be a quantum
critical system, i.e. a quantum field theory at a renormalization group fixed point describing a
continuous quantum phase transition3.

The best understood quantum field theories at a critical point are conformal field theories
(CFT) in 1 + 1 dimensions. In this case, the area law itself is replaced by a logarithmic
dependence on the linear size of the region, S = c

3 ln(LA/a), whose prefactor is indeed
universal, and it is given in terms of the central charge c of the CFT [12–15]. In general
spacetime dimension, scale-invariant quantum field theories are RG fixed points. At a fixed
point the RG predicts the scaling behavior of local operators. In practice, again with the
exception of CFTs in 1 + 1 dimensions, such fixed point theories are generally understood in
terms of various perturbative RGs, namely the 4 − ε expansion, the 2 + ε expansion and the
1/N expansion (see, e.g., [16, 17]).

In this language there is little conceptual difference between a fixed point theory describing
a classical thermodynamic phase transition and a fixed point of a quantum field theory. Indeed,
in the case of relativistic quantum field theories they are related by an analytic continuation
from Minkowski to Euclidean spacetimes. In essence, the entire conceptual construction
of the theory of quantum critical systems is based on this formal connection. However, in
general, relativistic invariance may or may not be present and the theory has a dynamic critical
exponent z, relating space and time, plus a set of scaling laws that describe the effects of
thermal fluctuations (in effect, a form of finite size scaling) (see e.g. [18]).

The description of scale-invariant quantum field theories is the problem of the scaling
behavior of local observables. Little is known in general of the behavior of non-local
observables such as the entanglement entropy in quantum field theories4. However, one
may ask if the scaling behavior of quantum entanglement is related in any simple way to the
fixed point theory of local observables and, in particular, what is the theory of the scaling
of quantum entanglement. In the case of CFTs in 1 + 1 dimensions this problem is by now
reasonably understood, and the connection between entanglement entropies and the structure
of the CFT is known (for a comprehensive discussion see Calabrese and Cardy’s contribution
to this issue [20]).5

1 The area law of entanglement has also been related to the Bekenstein–Hawking entropy through the AdS/CFT
correspondence in general dimension. For a review see the work of Nishioka et al [5].
2 Free Fermi systems at finite density are known to exhibit logarithmic violations of the area law of entanglement,
and obey instead a modified law of the form, Ld−1

A ln LA [6, 7]. This behavior is due to the existence of a Fermi
surface and its quantum fluctuations.
3 The use of quantum entanglement as a measure of quantum criticality has been proposed recently in studies of the
quantum impurity problems in quantum critical systems [8–11].
4 For a recent review of entanglement in quantum many-body systems see [19].
5 Logarithmic scaling of the entanglement entropy was also found at an infinite disorder fixed point of random
quantum Heisenberg chains [21, 22] (see also G Refael and J E Moore’s contribution to this issue [23].) Scaling of
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In this paper we will discuss the problem of universality in the scaling of the entanglement
entropy in the context of a special class of quantum critical points in 2 + 1 dimensions with
dynamic critical exponent z = 2: the conformal quantum critical points of the quantum Lifshitz
universality class(es) introduced in [25]. These fixed-point theories in 2 + 1 dimensions are
interesting in that they are essentially solvable. Indeed, as shown by Ardonne et al [25], these
theories have the special feature that the ground-state (or ‘vacuum’) wavefunction is scale
invariant. In contrast, in most scale-invariant theories (including CFTs in 1 + 1 dimensions)
it is the action (and the associated path-integral) that is scale (and conformal) invariant but
the wavefunction scales. The scale (and conformal) invariance of the quantum Lifshitz
wavefunctions (and of their norms) is the reason for the solvability of these quantum critical
points. In particular, the weight of a field configuration of a wavefunction of the quantum
Lifshitz class has the same form as the Gibbs weight of a system in two-dimensional classical
statistical mechanics which is scale invariant as it is a classical critical point. This 2D quantum–
2D classical connection has been exploited with great success in quantum dimer models at
the Rokhsar–Kivelson point [26, 27] and its many generalizations [25, 28–32]. The quantum
Lifshitz fixed points are multicritical points separating various ‘valence bond’ ordered phases
(that spontaneously break spatial symmetries of the underlying lattice model) and are also
proximate to topological phases. For this reason these fixed point theories typically have
more than one relevant operator. In a number of cases this leads to the transition to become
first order while in others it remains continuous [33, 34]. They are also intimately related to
Z2 gauge theories and, hence, their relevance for the description of topological (deconfined)
phases [28, 29, 35, 36]

The conformal structure, and locality, of the ground-state wavefunctions of quantum
Lifshitz fixed points allows for a direct computation of the entanglement entropy and for
investigating its scaling properties for this class of states [37–39]. Indeed, the entanglement
entropy of the 2D wavefunctions is simply related to a combination of free energies of the
related 2D Euclidean CFT obeying specific boundary conditions, whose scaling with size is
well known [40]. In [37, 39] it was found that the entanglement entropy at a general quantum
Lifshitz fixed point scales as6

SA = α

(
LA

a

)
+ γQCP + O

(
a

LA

)
(1.4)

provided the boundary � of region A is smooth and has no cusps (or other singular curvatures).
Here α, the prefactor of the ‘area’ law (a perimeter law in this 2D case), is once again non-
universal, and γQCP is a universal finite contribution to the entanglement entropy determined
by the conformal structure of the wavefunction [39]. Equation (1.4) yields the first result on
the universal scaling of the entanglement entropy for space dimensions d > 1.

In contrast, the scaling of the entanglement entropy at relativistic fixed points in space
dimensions d > 1 is much less understood and has only begun to be considered quite recently.
A number of important first results are given in [41] for the relativistic φ4 field theory with
a global O(N) symmetry, whose entanglement entropy was found to obey the same scaling
found at the quantum Lifshitz fixed points, cf equation (1.4)7. The structural origin of the
universal coefficients in these more generic fixed point theories is not yet well understood.

the entanglement entropy was also investigated numerically at Anderson localization transitions [24]. These systems
are scale invariant only in the sense of an ensemble average The physical meaning of the universal coefficient of the
entanglement entropy at infinite disorder fixed points is presently not understood.
6 For specific geometries, i.e. a disk, there are also universal finite contributions depending on the aspect ratio LA

LB
of

the chosen geometry [37, 39].
7 The scaling of the entanglement entropy at the QCP of the 2D Ising model in a transverse field was investigated
numerically recently in [42].
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The other classes of macroscopic physical systems for which the scaling of entanglement
is understood are topological phases of matter in two space dimensions and their associated
topological quantum field theories, where it is found that they obey the scaling [43, 44]

SA = α

(
LA

a

)
− γtopo + O

(
a

LA

)
(1.5)

where, once again, α is non-universal, and the finite term, −γtopo, is universal and given in
terms of the effective quantum dimension D ≡ √∑

a d2
a of the excitations of the topological

phase; here {da} are the quantum dimensions of excitations of type a. Note the opposite sign
in equations (1.4) and (1.5).

Being topological, these theories have no dependence on any length scale (i.e. the
correlation length is zero). Indeed, these theories are not only scale invariant but they also
have a much larger symmetry as they are effectively independent of the metric of the two-
dimensional space on which they exist. Thus, provided the short-distance structure is properly
treated, topological phases are well described by topological quantum field theories. The
prototype topological phases are the two-dimensional electron gases (2DEG) in large magnetic
fields in the fractional quantum Hall (FQH) regime [45], which behave as topological fluids
[46, 47]. Their effective field theories are intimately related to Chern–Simons gauge theory
[48]. The other classes of topological phases of matter (as yet not realized experimentally) are
the deconfined phases of Z2 gauge theories and its generalizations [31, 49–56].

We will see below that the entanglement entropy of a topological phase (and of a
topological field theory) depends on the topology of the surface, on the state of the system
on that surface and on the topology of the region being observed [57]. It further depends
on whether the state whose entanglement is being tested is one of the (generally degenerate)
vacua of the topological phase, or if it is an excited state (i.e. if there are excitations carrying
non-trivial labels). This feature of the entanglement entropy of a topological phase raises the
question of whether there is a minimum number of entanglement entropy measurements that
can uniquely determine the structure of the topological field theory. If this were true, it would
constitute a classification of topological field theories (at least in 2D). This is a well-known
open problem (see, [58, 59]).

In this paper we present a review of recent results on the scaling of the entanglement
entropy at 2D quantum Lifshitz fixed points and in topological phases and field theories. We
begin with a brief description of topological phases and their associated quantum field theories
(section 2). We then discuss the computation and scaling of quantum entanglement entropy for
the quantum Lifshitz universality class (section 3). In section 4 we compute the entanglement
entropy for Chern–Simons gauge theory and for the associated FQH fluids. The conclusions
are presented in section 5.

2. Topological phases and matter of topological field theory

Topological phases of matter are liquid phases of electron fluids and spin systems without long
range order, with or without time-reversal symmetry breaking. The quasiparticles of these
fluid phases are vortices typically with fractional charge (if the fluid is charged as in the case
of the FQH states of the 2DEG) and fractional statistics [60] which in turn may be Abelian
and non-Abelian.

Topological phases do not have local order parameters. Instead their observables are
non-local objects similar to the Wilson and t’Hooft loops of gauge theories. This similarity
is not accidental as the effective field theories of topological phases are topological gauge
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theories. Thus, they have a hidden topological order and a concomitant topological vacuum
degeneracy which depends on the topology of the 2D surface on which the state is defined
[46, 61].

The wavefunctions of the quasiparticles associated with topological phases are states that
transform non-trivially under a braiding operation [62] and hence exhibit fractional statistics.
More abstractly, the quasiparticles transform like irreducible representations of the Braid
group. (For a good modern review see Preskill [63].) In most cases, e.g. as in the Laughlin
FQH states and their generalizations, these representations are one-dimensional and classified
in terms of a single number, the statistical phase. There are a number of systems, notably
the non-Abelian FQH states [64–67] in which the quasi-particles are in non-Abelian (finite-
dimensional) representations of the Braid group. In this context, this means that the states with
a fixed number of quasiparticles are not completely specified by giving just their coordinates.
In fact there are a finite number of linearly independent states for a fixed set of quasiparticle
coordinates. This defines a topologically protected finite-dimensional quasiparticle Hilbert
space. This feature of the non-Abelian FQH states has been the primary motivation behind the
concept of topological quantum computing [54, 68, 69] and it is a subject of intense research
[70, 71].

At very low energies, i.e. at low energies compared to the quasiparticle gap, topological
phases admit an effective field theory description: topological field theory, e.g. Chern–Simons
gauge theory, discrete gauge theory. The best-known examples are the fractional quantum Hall
fluids (described by Chern–Simons gauge theory) and Z2 deconfined phases, which describe
quantum dimer models [29] and Kitaev’s toric code respectively [54].

Experimentally, the ‘best-known’ topological quantum liquids are, as we stated above,
the FQH states of the 2DEG at large magnetic fields. Most of the FQH fluids are Abelian FQH
states: Laughlin [45] and their generalization, the Jain states [72]. These states have been
known to exist as plateaus in the Hall conductance: σxy = νe2/h where ν is the filling fraction
of the partially filled Landau level. As far back as 1998 it was determined experimentally,
through measurements of the noise of the tunneling current at a constriction of the FQH fluid,
that their excitations are fractionally charged [73, 74]. More recent experiments [75] have
attempted to measure the fractional statistics of the (Abelian) quasiparticles by means of a
quantum interferometer along the lines proposed theoretically earlier on by Chamon et al [76].

More recent experimental work has focused on the non-Abelian FQH states. The best
and most promising candidate is the FQH state in the first Landau level, at filling fraction
ν = 5/2. This state has been suspected to be a Pfaffian (Moore–Read) FQH state (firm
candidate). There is now strong evidence for a vortex with charge q = e/4 in the FQH state
at filling factor ν = 5/2 from both shot noise experiments at a point contact [77], and from
DC transport experiments also at a point contact [78]. There is also a well-defined plateau in
the Hall conductance at ν = 12/5, and a possible candidate is a parafermion (Read–Rezayi)
state8.

It has also been suggested [79] that rapidly rotating ultra-cold Bose gases may also be in
possible non-Abelian (Pfaffian) FQH state of bosons at ν = 1 (a relative of the Moore–Read
fermionic state [64]), but the experiment is hard and difficult to do. The recent discovery
[80, 81] of a superconducting state with apparently spontaneous time-reversal symmetry
breaking in Sr2RuO4 suggesting that it is a px + ipy superconductor has raised the possibility
that this superconductor may have non-Abelian half-vortices [82, 83]9.

8 An Abelian (Jain) 2 + 2/5 state is however a possible competitor.
9 The current experimental evidence is strong but not uncontroversial as the predicted edge states have not (yet) been
observed.
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2.1. Hydrodynamic picture of topological phases and Gauge theory

We will begin with the effective field theory of the Abelian fractional quantum hall states.
The Abelian FQH states are generalizations of the Laughlin states whose wavefunctions for a
system of N electrons in Nφ magnetic fluxes, at filling fraction ν = N/Nφ = 1/m (with m an
odd integer), are [45]

�m(z1, . . . , zN) =
∏
i<j

(zi − zj )
m e−∑i |zi|2/4�2

(2.1)

where z = x + iy are the complex coordinates of the plane and � = √
h̄c/eB is the magnetic

length.
The effective field theory of the Laughlin FQH states is an Abelian Chern–Simons gauge

theory [84, 85] and it is usually derived through a mean field theory approach (see, e.g., [86]).
We will follow here instead a more intuitive phenomenological approach of [47, 87, 88] based
on hydrodynamic considerations. Here I follow in detail the approach described by Wen [47].

The 2DEG is a charged fluid. As such it has a conserved charge current jμ, μ = 0, 1, 2,
using a 3-vector relativistic notation. From the conservation of the current

∂μjμ = 0 (2.2)

it follows that in 2D the current is dual to a vector field Aμ, defined by

jμ = 1

2π
εμνλ∂

νAλ. (2.3)

The vector field Aμ is a gauge field since a gauge transformation Aμ → Aμ + ∂μ� leaves the
currents jμ invariant.

Hence, we expect to be able to construct an effective theory of the FQH fluid solely in terms
of the vector field Aμ (hereafter referred to as the hydrodynamic gauge field [47]). However,
to construct this theory we must take into account that the FQH fluid is incompressible,
i.e. a fully gapped state (except possibly at the edges of the system where its chiral edge
states reside10). Since the theory is gapped and gauge invariant, we expect the effective
action for the hydrodynamic gauge field to be gauge invariant (as in any gauge theory) and
local. Consequently, the action is a local gauge-invariant function of Aμ. In addition the
effective action must be odd under time reversal, since the 2DEG is in the presence of a large
perpendicular magnetic field.

These requirements fully determine the form of the effective action since the only possible
form of the effective action for the hydrodynamic gauge field Aμ that is local, gauge invariant
and odd under time reversal is the Chern–Simons action for a gauge field Aμ with a U(1)m
gauge invariance:

S(A) = m

4π

∫
�×S1

d3x εμνλAμ∂νAλ. (2.4)

Here � is the spatial manifold and S1 is the (compactified) time direction. Furthermore, the
requirement that the action must also be invariant under large gauge transformation on a closed
manifold � (such as the sphere S2 or a torus T2) further restricts the theory by quantizing the
parameter m to be an integer [48].

The form of the effective theory is now fully determined once the coupling to an
external electromagnetic field Aμ is specified (consistent with invariance under ordinary
electromagnetic gauge transformations) with a term in the local Lagrangian of the form
Lint = −ejμAμ = − e

2π
εμνλA

μ∂νAλ, and the quasiparticles (the vortices of the fluid) couple

10 For an extensive discussion see [47].
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through their currents j
qp
μ to the hydrodynamic gauge field Aμ with the standard gauge-

invariant minimal coupling. This theory then predicts [47] that the Hall conductance is
σxy = 1

m
e2

h
, and that its excitations are vortices with fractional charge q = e/m and fractional

(braid) statistics θ = π/m. For a system of fermions the level m of the Chern–Simons gauge
theory must be an odd integer.

Following Wen again [47], we now note that a 2DEG on a manifold � with a boundary
∂� has chiral edge states, described by a compactified chiral boson CFT U(1)m with the
compactification radius R = 1/

√
m and central charge c = 1.

With some work, the hydrodynamic description also generalizes to the non-Abelian FQH
states [67, 89, 90]. I will not give a full description here as this will be discussed in upcoming
publication [90]. For our present purposes it will be sufficient to note the structure of the
effective theory in a few cases of interest.

The wavefunctions for the non-Abelian Moore–Read (MR) (Pfaffian) FQH states are

�q(z1, . . . , zN) = Pf

(
1

zi − zj

)∏
i<j

(zi − zj )
q e−∑i |zi|2/4�2

, (2.5)

where Pf denotes the Pfaffian of the antisymmetric matrix 1/(zi − zj ).
For ν = 1, the wavefunction is a MR bosonic state with q = 1. It turns out [67, 89] that

in this case the effective field theory is an SU(2)2 Chern–Simons theory. On the other hand,
for the case of the ν = 5/2 fermionic Pfaffian and anti-Pfaffian states, the theory now has
a U(1)2 charge sector and an SU(2)2/U(1) neutral sector that need to be consistently glued
together [57, 64, 89–91].

Furthermore, the non-Abelian states have a richer excitation spectrum than their Abelian
counterparts, which now contains the following.

• Half-vortices (denoted by σ ) with the charge q = e/4 (fermionic case) and q = e/2
(bosonic case) and non-Abelian fractional (braid) statistics.

• Vortices that are charge neutral Majorana fermions (denoted by ψ).
• Laughlin vortices with the charge e/m and Abelian fractional statistics π/m

In summary, for the non-Abelian FQH states the effective theory has an Abelian charge
sector, a U(1)m Chern–Simons gauge theory and a neutral sector, which is described by a non-
Abelian SU(2)q Chern–Simons gauge theory with a U(1) subgroup moded out (a ‘coset’).
The charge and neutral sectors are glued together by the requirement that the states thus
obtained are local with respect to the electron (as the FQH fluid is an electron condensate)
[64].

Below we will use this construction to compute the entanglement entropy for Abelian and
non-Abelian FQH states directly from the effective Chern–Simons gauge theory [57]. Details
of the construction of these effective field theories will be given in [90].

2.2. Time reversal invariant systems and quantum dimer models

Quantum dimer models (QDM) are time-reversal invariant lattice systems, originally proposed
to describe the quantum frustration of antiferromagnetism in a doped Mott insulator [26]. In
that framework, the dimer degrees of freedom are valence-bond singlet states of nearby spins
on a lattice (for a detailed description see [27]). Quantum dimer models have a special value
of their couplings, known as the Rokhsar–Kivelson (RK) point, where the Hamiltonian can be
shown to have an exact ground-state wavefunction of the form of the short-range ‘resonating
valence bond’ (RVB) state

|�RVB〉 =
∑
{C}

|C〉, {C} = all dimer coverings of the lattice, (2.6)

8



J. Phys. A: Math. Theor. 42 (2009) 504011 E Fradkin

where states represented by different dimer configurations are taken to be an orthonormal
basis11. A special, and very useful, feature of this state is that the weight of a configuration,
i.e. a particular covering of the lattice by dimers, is the same as the Gibbs weight of a classical
dimer model on the same lattice. In particular, the norm of this wavefunction is equal (in this
case) to the partition function of classical dimers on the same lattice. Using the ‘quantum-
classical’ connection it is straightforward to show that the equal-time correlation functions
of the quantum theory can be computed from the correlation functions of the corresponding
classical dimer model for suitably defined observables. Since the classical dimer model is
integrable, the corresponding correlators are known.

This approach has been generalized to systems with more complex degrees of freedom.
One such generalization is a quantum version of the Baxter (or eight vertex) model, which has
ordered and topological phases separated by lines of fixed points of the Lifshitz universality
class [25]. Other generalizations [30, 32, 92] include ‘doped’ and/or interacting dimer
models. There are also generalizations with non-Abelian time-reversal invariant states based
on quantum loop and net models at their respective ‘RK’ point [31, 55, 93, 94].

We will not give a detailed description of the phase diagram of QDMs here. However,
it will suffice to say that the RK point for a system on a bipartite lattice describes quantum
(multi)-critical points (if not preempted by a first order transition), whose effective field
theory has dynamical critical exponent z = 2 and massless deconfined topological excitations
(‘spinons’ and ‘visons’) [26, 29, 33, 34, 36].

On the other hand, on non-bipartite lattices, the QDM at the RK point is in a topological
Z2 deconfined phase with massive spinons and visons and a topological fourfold ground-state
degeneracy on a torus [29, 36]. This state is closely related to Kitaev’s toric code [54] and to
the Z2 gauge theory at its (ultra)-deconfined point12.

In the next section we present the effective field theory of the QDMs at their quantum
critical point: the quantum Lifshitz model.

3. Scaling of entanglement entropy for the quantum Lifshitz universality class

3.1. The quantum Lifshitz universality class

The quantum Lifshitz model is the effective field theory of QDMs at criticality [25, 36, 95]. A
quantum (as well as classical) dimer model on a bipartite lattice admits a height representation
in terms of a set of integer-valued degrees of freedom (the ‘heights’) residing on the sites
of the dual lattice (see Nienhuis [96]). We will label the dual degrees of freedom by the
(discrete) local height variable h. However, not all height configurations are allowed. Thus
for a configuration which has a dimer on the x-link of the direct lattice, a height configuration
on the dual lattice is assigned such that the heights defined on the two plaquettes that share
that link increase by one unit if the link of the dual lattice does not cross the dimer on the
direct lattice and drops by three units if it does cross a dimer. In this fashion, the assigned
configurations are in one-to-one correspondence with each other. In particular, we should
note that heights are defined mod 4. This rule will be violated if a site does not have a dimer
attached to it (i.e. if it has ‘hole’ on that site), and it corresponds to a topological excitation in
the height picture.

It is shown in [25, 36] that the dual height model can be coarse-grained resulting in a
model of a scalar field ϕ, compactified (to reflect the constraints of the height configurations)

11 This condition is not satisfied for a system with spin 1/2 degrees of freedom but it is accurate in SU(N) spin
systems in the large N limit [35].
12 This is discussed in considerable detail in the appendix of [38].
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by the requirement that all allowed physical operators, which take the vertex operator form
exp(inϕ/r) (as well as the Hamiltonian), be invariant under ϕ → ϕ + 2πr , where r is the
compactification radius. The quantum Hamiltonian for the resulting model is

H =
∫

d2x

[
�2

2
+

1

2

(
k

4π

)2

(∇2ϕ)2

]
(3.1)

where ϕ and � obey canonical equal-time commutation relations,

[ϕ(�x),�(�y)] = iδ2(�x − �y) (3.2)

and k is a (so far) arbitrary parameter.
The term ‘quantum Lifshitz model’ follows from the path-integral representation of this

quantum theory in 2 + 1 Euclidean (imaginary time) spacetime whose action is

S =
∫

d2x dτ

[
(∂τϕ)2 +

1

2

(
k

4π

)2

(∇2ϕ)2

]
(3.3)

where τ is the imaginary time coordinate. This (Euclidean) action is the same as the free
energy of a classical statistical mechanical system in 3D at a (classical) Lifshitz critical point
between a uniform (but anisotropic) state and a modulated state [97].

It is trivial to show that the ground-state wavefunction �0[ϕ] of the Hamiltonian of
equation (3.1) is scale invariant and given by

�0[ϕ] ∝ e− k
8π

∫
d2x(∇ϕ(x))2

(3.4)

which has the form of a local Gibbs weight in classical statistical mechanics. Indeed, it
corresponds to the simplest critical classical system in 2D, the free boson or Gaussian model.
Moreover, the norm of the 2D wavefunction is the partition function of this classical critical
conformally invariant system:

‖�0‖2 =
∫

Dϕ e− k
4π

∫
d2x (∇ϕ(x))2 = ‘Z′. (3.5)

Furthermore, not only the norm (squared) of the wavefunction maps to the partition function
of the classical critical system (with the weight squared) but the observables themselves can be
mapped. In particular the observables of the effective theory have the form of vertex operators
with charges determined by the compactification condition. (For details and generalizations
see [25].)

QDMs are gauge theories in disguise. In [36] it was shown that the Rokhsar–Kivelson
QDM is a Z2 gauge theory but not in the conventional vacuum sector (such as the one discussed
in [98] and references therein). It is instead (in the terminology of [36]) an ‘odd gauge theory’.
Likewise Kitaev’s toric code [54] is also a Z2 gauge theory (see the discussion in [38]). It is
easy to show that the quantum Lifshitz model, equation (3.1), is dual to gauge theory, albeit
not a Lorentz invariant one. To this end, let us define a vector field Aμ in 2 + 1 dimensions,
and its quantum Hamiltonian

H =
∫

d2x

[
1

2

(
k

4π

)2

( �∇ × �E)2 +
B2

2

]
(3.6)

where �E and B are respectively the associated ‘electric field’, Ei = −∂0Ai − ∂iA0, and
‘magnetic field’, B = εij ∂iAj (i, j = 1, 2), supplemented by the Gauss law condition that
projects onto the physical, gauge-invariant, states [98]

�∇ · �E|Phys〉 = 0. (3.7)

10
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L
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Dirichlet
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Γ

Figure 1. The disk geometry.

It is straightforward to show that equation (3.6) reduces to equation (3.1) upon solving the
Gauss law constraint by setting �E = �∇ × ϕ (i.e. Ei = εij ∂jϕ), and realizing that B ≡ �.

In summary, this construction is a mapping to a 2D Euclidean CFT. Under this mapping
we find that

• the amplitude of |ϕ〉 is the Gibbs weight of a Euclidean 2D free massless scalar field:
scale invariant wavefunctions,

• at these quantum critical points the ground-state wavefunction is scale invariant,
• the equal-time expectation value of operators in the quantum Lifshitz model is given by

correlators of the massless free boson conformal field theory with central charge c = 1,
• time-dependent correlators: dynamical exponent z = 2,
• by matching the correlation functions of the QDM at the RK point and Lifshitz models,

one finds that the parameter k has to be chosen to be k = 2, r = 1 (k = 1 at the KT point).
• for the 2D quantum Baxter wavefunction [25], one finds that k varies continuously as a

function of the Baxter weights,
• this construction generalizes to states with non-Abelian braid statistics [31],
• in general the resulting theory is a unitary Euclidean CFT.

3.2. Entanglement entropy and classical partition functions

Let us compute the entanglement entropy for the ground-state wavefunction �0[ϕ] of the
quantum Lifshitz model, equation (3.4). We will follow in detail the arguments presented in
[37]. We will consider here the geometry of a disk (shown in figure 1) with Dirichlet boundary
conditions at infinity. Let region A be a large disk of circumference �, and B be an annular
region of inner circumference � and outer circumference L, such that L 
 � 
 a (a is the
short distance cutoff). The common boundary � between region A and region B is taken (for
simplicity) to be a circle of circumference �.

For conformal quantum critical points, the Hilbert space has an orthonormal basis of
states |{φ}〉 indexed by classical configurations {φ}, and the ground state |�0〉 of the bipartite
system is determined by a CFT action S:

|�0〉 = 1√
Zc

∫
Dφ e−S({φ})/2|{φ}〉. (3.8)

Here

Zc =
∫

Dφ e−S({φ}) (3.9)

and expectation values in this state reproduce CFT correlators.

11
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To investigate the universal finite terms in the entanglement entropy at 2D conformal
QCPs, we will rely on the approach described in the work of Fradkin and Moore [37]. Using
the ‘replica trick’ to compute the entanglement entropy [13, 14], they showed that the trace
of the nth power of the reduced density matrix, tr ρn

A, where ρA is the (normalized) reduced
density matrix of region A (where A and B form a partition of the entire system A ∪ B, and
are separated by their common boundary �) for the ground-state �0 on A ∪ B, is given by13

trρn
A = Zn

Zn
=
(

ZAZB

ZA∪B

)n−1

. (3.10)

Here Zn is the partition function of n copies of the equivalent 2D classical statistical mechanical
system satisfying the constraint that their degrees of freedom are identified on the boundary
�, and Zn is the partition function for n decoupled systems. The partition functions on the
rhs of equation (3.10) are ZA = ∥∥�A

0

∥∥2
with support on region A and

∥∥�B
0

∥∥2
with support in

region B, both satisfying generalized Dirichlet (i.e. fixed) boundary conditions on � of A and
B, and ZA∪B = ‖�0‖2 is the norm squared for the full system. The entanglement entropy S is
then obtained by an analytic continuation in n,

S = −tr (ρA ln ρA) = − lim
n→1

∂

∂n
tr ρn

A = − log

(
ZAZB

ZA∪B

)
. (3.11)

Hence, the computation of the entanglement entropy is reduced to the computation of a ratio
of partition functions in a 2D classical statistical mechanical problem, a Euclidean CFT in the
case of a critical wavefunction, each satisfying specific boundary conditions.

In order to construct tr ρn
A, we need an expression for the matrix elements of the reduced

density matrix 〈φA|ρA|φ′A〉. Since the ground-state wavefunction is a local function of the
field φ(x), a general matrix element of the reduced density matrix is a trace of the density
matrix of the pure state �GS[φ] over the degrees of freedom of the ‘unobserved’ region B,
denoted by φB(x). Hence the matrix elements of ρA take the form

〈φA|ρ̂A|φ′A〉 = 1

Z

∫
[DφB] e−( 1

2 SA(φA)+ 1
2 SA(φ′A)+SB(φB)), (3.12)

where the degrees of freedom satisfy the boundary condition at the common boundary �:

BC� : φB |� = φA|� = φ′A|�. (3.13)

Proceeding with the computation of trρn
A, it is immediate to see that the matrix product requires

the condition φA
i = φ′A

i−1 for i = 1, · · · , n, and φ′A
n = φA

1 from the trace condition. Hence,
trρn

A takes the form

tr ρn
A ≡ Zn

Zn

= 1

Zn

∫
BC�

∏
i

DφA
i DφB

i e−∑n
i=1(S(φA

i )+S(φB
i )) (3.14)

subject to the boundary condition BC� of equation (3.13). Note that the numerator, Zn, is the
partition function on n systems whose degrees of freedom are identified in � but are otherwise
independent. Also note the absence of the factors of 1/2 in the exponentials of equation (3.14).

The other important consideration is that the compactification condition requires that two
fields that differ by 2πr be equivalent. Hence, the boundary condition of equation (3.13) is

13 The quantity tr ρn
A is known as the Renyi entropy. It is a simpler quantity to compute than the von Neumann

entanglement entropy. Unlike the von Neumann entropy, the Renyi entropy is not extensive and its physical meaning
(and significance) is quite unclear. The (exponential of the) universal finite contribution γQCP to the von Neumann
entropy of equation (1.4) is a universal prefactor in the Renyi entropy.

12
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defined modulo 2πr . (Equivalently, the proper form of the degrees of freedom is eiφ .) This
means that one can alternatively define Zn as a partition function for n systems which are
decoupled in the bulk but have a boundary coupling of the form (in the limit λ� → ∞, which
enforces the boundary condition)

S� = −
∮

�

λ�

n∑
i=1

cos(φi − φi+1). (3.15)

Here the fields φi extend over the entire region A ∪ B. Thus, this problem maps onto a
boundary CFT for a system with n ‘replicas’ coupled only through the boundary condition on
the closed contour �, the boundary between the A and B regions.

For the special case of the free scalar field, one can simplify this further by taking linear
combinations of the replica fields. Then the condition that the scalar fields φi agree with
each other on � can be satisfied by forming n − 1 relative coordinates ϕi ≡ φi − φi+1

(i = 1, . . . , n − 1) that vanish (mod 2πr) on �, and one ‘center of mass coordinate’ field
φ ≡ 1√

n

∑n
i=1 φi that is unaffected by the boundary � (reflecting the fact that nothing physical

takes place at �). Hence, the computation of tr ρn
A reduces to the product of two partition

functions.

(i) The partition function for the ‘center of mass’ field φ; since φ does not see the boundary
�, this is just the partition function ZA∪B for a single field in the entire system.

(ii) The partition function for the n − 1 fields ϕi which are independent from each other and
vanish (mod 2πr on �). We denote this by

(
ZD

�

)n−1
. However, the fields ϕi on the A

and B regions are effectively decoupled from each other. Hence, this partition function
further factorizes to ZD

� = ZD
A ZD

B , where ZD
A and ZD

B are the partition functions for a
single field φ on A and B respectively, satisfying in each case Dirichlet (fixed) boundary
conditions (mod 2πr) at their common boundary �.

For any CFT there exists a conformal boundary condition that generalizes the notion of the
Dirichlet boundary condition in the free case (see below). In terms of the partition functions
ZD, for a field in the whole system A ∪ B that vanishes at the boundary, and ZF, for a field that
is free at the boundary,

Tr ρn
A = Zn−1

D ZF

ZF
n =

(
ZD

ZF

)n−1

(3.16)

and therefore

S = − log
ZD

ZF

= − log
ZA

DZB
D

ZF

. (3.17)

In the last equality, the Dirichlet boundary condition at the boundary was used to split the
partition function into contributions from A and B, each including the boundary with Dirichlet
boundary conditions. Finally, the entanglement entropy for a general conformal quantum
critical point is just the dimensionless free energy difference induced by the partition in the
associated CFT [37]:

S = FA + FB − FA∪B, (3.18)

where FA, FB and FA∪B are the free energies of the CFT associated with the ground-state
wavefunction, with specific boundary conditions. For the case of the quantum Lifshitz
wavefunction, (3.4), FA obeys Dirichlet boundary conditions on �, FB obeys Dirichlet boundary
conditions on the inner boundary � and as-yet-unspecified boundary conditions on its outer
boundary and FA∪B obeys the same boundary conditions on its (only outer) boundary as FB.

13
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We have thus succeeded in expressing the entanglement entropy in terms of a
combination of free energies of 2D Euclidean CFTs satisfying specified boundary conditions.
Equation (3.18) is actually of general validity. For the case of a general CFT, Dirichlet
boundary conditions are replaced by fixed boundary conditions, which generally implies that
the boundary state is in the conformal block of the identity [39, 99, 100]. Hence, the problem
of computing the entanglement entropies of conformal wavefunctions reduces to a problem in
boundary Euclidean CFT in 2D.

To determine the scaling of the entanglement entropy with the linear size of the
region being observed, we thus need to know the same scaling for the free energies of
Equation (3.18). The latter is a problem that has been studied for quite a long time and much
is known about it. For a large bounded region of linear size L and smooth boundary, F obeys
the ‘Mark Kac Law’ [101] 14

F = αL2 + βL − c

6
χ ln L + O(1), (3.19)

a general result due to Cardy and Peschel [40]. Here, α and β are non-universal constants, c is
the central charge of the CFT and χ is the Euler characteristic of the region in consideration:

χ = 2 − 2h − b, (3.20)

where h and b are the number of handles and the number of boundaries of the region
respectively.

Hence, the logarithmically dependent term in the entanglement entropy is

�S = − c

6
(χA + χB − χA∪B) log L. (3.21)

We will see below that the O(1) correction has a universal piece related to the ‘boundary
entropy’ of Affleck and Ludwig in boundary CFT [102].

For regions A ⊆ B, the coefficient of the log L term vanishes since in this case there is
no net change in the Euler characteristic:

χA + χB = χA∪B ⇒ �S = 0. (3.22)

On the other hand if under some physical process A and B become physically separate and
have no common intersection, it follows that χA + χB − χA∪B �= 0. Hence, if the system
physically splits into two disjoint parts, then there is a log L term in the entanglement entropy.
Logarithmic terms in the entanglement entropy also arise if neither A nor B is a subset of
the other region, yet share a common boundary. In this case, there is a log L term whose
coefficient is determined by the angles at the intersections. Finally, if the boundary of A is not
smooth, then the coefficient depends on the angles αi for both regions where the boundary �

is singular (for details, see [37]).

3.3. Universal finite contributions to the entanglement entropy: the quantum Lifshitz case

In this section we will consider the interesting (and generic) case in which the logarithmic
terms cancel out, by the argument given in the previous section. This problem was discussed
in detail by Hsu et al [39] and we follow their treatment closely.

If the coefficient of the logarithmic term vanishes, O(1) becomes universal. The finite
term is determined by the contributions of the winding modes to the respective partition
functions. These partition functions have been computed and studied extensively in the CFT
literature [103, 104]. The result depends on the topology of the surface and on the properties
of the CFT associated with the wavefunction.
14 ‘Can you hear the shape of a drum?’
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Figure 2. The cylinder geometry.

For the quantum Lifshitz universality class on a cylinder (see figure 2), with LA,B 
 �,
the partition function for a boson with compactification radius R on a cylinder of length L and
circumference � with Dirichlet boundary conditions on both ends is well known: [105]

ZDD(L, �) = N
1

R

ϑ3
(

2τ
R2

)
η(q2)

(3.23)

where R =
√

2r2k is the effective compactification radius (as before), andN is a non-universal
regularization-dependent prefactor, responsible for the area- and perimeter-dependent terms
in the free energy. (There are no logarithmic terms for a cylinder or a torus as their Euler
characteristic χ vanishes.) In equation (3.23) τ = iL

�
is the modular parameter, encoding the

geometry of the cylinder, and q = e2π iτ . The elliptic theta-function ϑ3(τ ) and the Dedekind
eta-function η(q) respectively are given by

ϑ3(τ ) =
∞∑

n=−∞
q

n2

2 , η(q) = q
1

24

∞∏
n=1

(1 − qn). (3.24)

The important feature of equation (3.23) is the factor 1/R, the contribution of the winding
modes of the compactified boson on the cylinder with Dirichlet boundary conditions.

Putting it all together, it is straightforward to find an expression for the entanglement
entropy using equation (3.16). In general, the entanglement entropy depends on the geometry
(e.g. the aspect ratios L/�) of the cylinders, encoded in ratios of theta and eta functions.
However, in the limit LA 
 �, in which the length of the cylinders is long compared to their
circumference, the entanglement entropy given by equations (3.17) and (3.23) takes a simple
form

S = μ� + ln R, (3.25)

where μ is a non-universal constant that depends on the regularization-dependent pre-factor N
of equation (3.23). Hence, there is an O(1) universal contribution to the entanglement entropy
γQCP = ln R for the cylindrical geometry. The explicit dependence of γQCP on the effective
compactification radius R =

√
2kr2 shows that it is determined by the winding modes of

the compactified boson and thus it is a universal quantity determined by the topology of the
surface. In particular we find that the universal piece of the entanglement entropy, γQCP, for a
compactified boson is a continuous function of the radius R, a consequence of the existence
of an exactly marginal operator at this QCP. We find similar relations for all topologies we
considered.

Hence, for the cylinder geometry the O(1) universal term Scylinder equals

Scylinder = log R (3.26)
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Figure 3. The torus geometry.

where R =
√

2kr2 is the compactification radius of the associated CFT15. For the RK quantum
dimer model, k = r = 1 and we obtain R = √

2.
Hence, for the quantum Lifshitz model on a cylinder, the universal finite term in the

entanglement entropy is log
√

2. It differs from its value −ln 2 in the nearby topological
phase, which as a topological phase is in the universality class of Kitaev’s toric code.

The case of quantum Lifshitz models on a torus can be analyzed similarly. We now
consider the case in which the full system A ∪ B is a torus for which the real part of the
modulus L/� 
 1, as shown in figure 3. The two subsystems A and B are now two cylinders
of lengths LA and LB respectively (L = LA + LB), both with the same circumference �. We
will thus need the partition function on a torus and on two cylinders (with both ends of the
cylinders obeying Dirichlet boundary conditions). The trace tr ρn

A now becomes

tr ρn
A =

(
ZA

DD(LA, �)ZB
DD (LB, �)

ZA∪B
torus (L, �)

)n−1

. (3.27)

The partition functions for the two cylinders, A and B, have the form of equation (3.23). The
partition function for the torus is [103, 104]

Ztorus(L, �) =
(

ZNN
cylinder

(
L

2
, �

))2

, (3.28)

where ZNN
cylinder

(
L
2 , �
)

is the partition function on a cylinder of length L
2 and circumference �,

with Neumann boundary conditions at both ends:

ZNN
cylinder

(
L

2
, �

)
= N

√
kr2

2

ϑ3(τkr2)

η(q2)
, (3.29)

where τ = iL
�

and q = exp(2π iτ).
In the limit LA 
 � 
 a and LB 
 � 
 a, the entanglement entropy for the toroidal

geometry is

S = μ� + 2 ln

(
R2

2

)
. (3.30)

Hence, for the toroidal geometry, the universal term is γQCP = 2 ln(kr2) = 2 ln(R2/2). In
equation (3.30) μ is, once again, a non-universal factor which depends on both the short
distance regularization and boundary conditions (in fact, it is not equal to the constant we also
called ‘μ’ in the entanglement entropy for the case of the cylinder, equation (3.25).) As was

15 Note that the compactification radius of the associated Euclidean CFT is not the same as that of the (2 + 1)-
dimensional theory.
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the case for the cylindrical geometry, in the case of the torus γQCP is also determined by the
contribution of the zero modes of the compactified boson to the partition functions. Thus, here
too, γQCP depends on the effective boson radius R =

√
2kr2. However, the different values

of γQCP in equations (3.30) and (3.25) are due to the fact that on the torus all three partition
functions have contributions from the zero modes.

For a disk, with the geometry of figure 1, the finite universal term Sdisk depends also on
the aspect ratio, and the universal finite term is [39]

Sdisk = 1

2
ln

[
1

π
ln

(
L

�

)]
+ ln R. (3.31)

We close this section with the application of these results to several problems of interest.
As noted in previous sections several systems of interest can be mapped to the quantum Lifshitz
model for an appropriate choice of the parameter k and the compactification radius r. Systems
of this type include (a) the quantum dimer model [26], for which k = r = 1, (b) a generalized
‘interacting’ quantum dimer model [30, 32], for which k varies continuously but r is fixed to
1, and (c) the quantum eight-vertex model of [25] for which r = 1 and k varies continuously
(long the six vertex line) as (here c is a Baxter weight)

π

2k
= cot−1

√
4

c4
− 1. (3.32)

In all three cases we have mapped the problem to a Euclidean boson CFT in 2D with
the compactification radius R =

√
2kr2. In all three systems, there is a perturbation that

destabilizes the fixed line and drives the system immediately into a topological phase. For
the dimer models, the relevant perturbation that drives the system into the topological phase
are dimers on both sublattices [25], whereas in the case of the quantum Baxter model the
Baxter weights that break the continuous symmetry of the six-vertex model (down to a Z2)
are responsible for this transition. As shown in [38], the universal term of the entanglement
entropy is the same (and hence universal) in the entire topological phase, taking the value
−ln 2, associated with its value at the Kitaev point, the stable fixed point of the topological
phase (see also, [106]). Hence, while in the topological phase the universal term has a fixed
(and negative) value, along the critical lines the universal term of the entanglement entropy
varies continuously as a function of the parameter k16. Hence, in general, we should expect
that the universal term of the entanglement entropy may jump at phase transitions17.

3.4. Universal finite contributions to the entanglement entropy: general case

The results of the previous sections generalize for a general conformally invariant wavefunction
defined by the Gibbs weights of a 2D (Euclidean) rational conformal field theory (RCFT),
e.g. the Ising model, quantum loop and net models. Once again, the norm (squared) of the
wavefunction becomes a partition function of an associated 2D Euclidean CFT. However since
these are no longer free field theories, the identification of the CFT is a little more involved
[31].

In this section we will compute the entanglement entropy for wavefunctions whose weights
are associated with an RCFT, following the work of [39]. Here we rely on the very basic and

16 This should not be a surprise since the critical lines exist due to the presence of an exactly marginal operator in the
theory.
17 Indeed, in an ordered phase, we expect the finite universal terms to vanish.
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standard properties of CFTs which can be found in many texts, see e.g. [104]. A 2D RCFT
has a set of primary fields �a that have an operator product expansion (OPE) of the form

�a × �b =
∑

j

N
j

ab�j (3.33)

where the integer-valued coefficients N
j

ab are known as the fusion coefficients. On the other
hand, each primary field defines a set of conformally invariant boundary conditions labeled
by a. This defines a boundary RCFT [40].

A rational CFT (RCFT) is a CFT with a finite number of primaries. Under a modular
transformation the partition function of an RCFT with boundary conditions specified by the
action of its primary fields transforms linearly. These modular transformation laws are encoded
in the modular S-matrix which is related to the fusion coefficients by the Verlinde formula
[107]

N
j

ab =
∑

i

Si
j S

i
aS

b
i

Si
0

. (3.34)

The partition function for an RCFT on a cylinder of length L and circumference �, with
boundary conditions a and b on the left and right ends respectively, Za/b, can be expressed in
terms of the characters χi of the RCFT:

Za/b =
∑

j

N
j

abχj (e
−π�/L), (3.35)

where N
j

ab are the fusion coefficients.
The Virasoro characters χj are given by the trace over the descendants |�j 〉 of the highest

weight state, which are obtained by acting on it with the Virasoro generators L̂−n (n > 0):

χj (e
−π�/L) = eπ�c/24L tra(e

− π�
L L̂0), (3.36)

where c is the central charge of the CFT and L̂0 is the n = 0 Virasoro generator. Here
the modular parameter is τ ≡ i�/2L. Under a modular transformation τ → −1/τ , which
exchanges the Euclidean ‘space’ and ‘time’ dimensions of the cylinder (i.e. it flips the cylinder
from the ‘horizontal’ to the ‘vertical’ position), the characters transform as

χi(e
−π�/L) = S

j

i χj (e
−4πL/�), (3.37)

where S
j

i is the modular S-matrix of the RCFT. The modular S-matrix and the fusion
coefficients are related by the Verlinde formula.

The limit of interest here is, once again, L 
 �. Under a modular transformation, the
partition function of equation (3.35) becomes

Za/b =
∑
i,j

Ni
ab S

j

i χj (e
−4πL/�). (3.38)

In the limit �
L

→ 0, Za/b is dominated by the the descendants of the identity 1 (up to
exponentially small corrections). Hence, in this limit,

Za/b →
∑

i

Ni
abS

0
i χ0(e

−4πL/�) → e
πLc
6�

∑
i

Ni
ab S0

i (3.39)

and ln Za/b becomes

ln Za/b = πLc

6�
+ ln gab, (3.40)
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dropping UV singular (non-universal) terms. The quantity ln gab in equation (3.40) is the
boundary entropy of a boundary RCFT introduced by Affleck and Ludwig [102], where the
‘ground-state degeneracy’ gab is given by

gab =
∑

i

Ni
abS

0
i . (3.41)

For a cylindrical geometry, the entanglement entropy is

S = − log

(
ZA

DZB
D

ZA∪B

)
= μ� − ln

(
ga0g0b

gab

)
. (3.42)

This is the main result, which shows that γQCP is in general determined by the OPE coefficients
Nc

ba (which encode the boundary conditions on the partition functions) and by the modular
S-matrix, S

j

i , of the RCFT associated with the norm squared of the many-body wavefunction
at the given QCP.

It is important to note that it is also possible to define a unitary S-matrix that governs
the transformation properties of the wavefunction itself under a modular transformation. This
modular S-matrix plays a central role in 2D topological phases and in topological field theories
[43, 48, 108]. However, only for topological theories these two S-matrices are the same and
in general are different (or even not be defined at all!). We will come back to this issue in the
discussion section.

A particularly simple result is obtained for the case of a cylinder with fixed boundary
conditions on both ends. In this case, ZA, ZB and ZA∪B are cylinders with fixed boundary
conditions, and hence the boundary states for all three cases are in the conformal block of
the identity 1. Since in this case the only non-vanishing OPE coefficient is N0

00 = 1, the
universal term of the entanglement entropy, γQCP, depends only on the element S0

0 of the
modular S-matrix of the RCFT:

γQCP = −ln S0
0 . (3.43)

Hsu et al [39] give a detailed application of these results to the computation of the
entanglement entropy in a few interesting non-trivial systems: (a) a 2D quantum system
whose wavefunction has the Gibbs weights of the 2D Ising model, (b) quantum loop models
and (3) quantum net models (including the chromatic polynomial model). For details see
[39]18.

4. Quantum entanglement entropy and Chern–Simons gauge theory

We now turn to the problem of computing the entanglement entropy in topological phases
using the effective topological field theory. Here we will focus on the case of Chern–Simons
gauge theories and the related FQH fluids. We will follow closely the results of Dong et al
[57].

In previous sections we showed that the FQH wavefunctions represent topological fluids
with a finite correlation length ξ ∝ � (� is the magnetic length). Recently, the entanglement
entropy of FQH states has been computed numerically by Schoutens et al [109–111] and by Li
and Haldane [112], and at quantum Hall phase transitions [113]. Here we will show [57] that
one can compute the entanglement entropy directly from the effective field theory of all FQH
states: Chern–Simons gauge theory. This result can be applied directly to all known FQH
states. Since it uses the effective topological field theory, it computes only the topological

18 Hsu et al [39] also verified that for the U(1) case equation (3.43) reproduces the results obtained by explicit
computation of the partition functions summarized in the previous sections.
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invariant piece of the entanglement entropy. The resulting universal topological entanglement
entropy is given in terms of the modular S-matrix of the effective Chern–Simons theory and
of its conformal blocks.

In [57] we computed the entanglement entropy for a level k Chern–Simons theory on a
smooth manifold with any number of handles, using the seminal results of Witten [48] for the
Chern–Simons theory. The action of a (non-Abelian) Chern–Simons gauge theory is

S(A) = k

4π

∫
Tr

(
A ∧ dA +

2

3
A ∧ A ∧ A

)
(4.1)

where, as usual, Aμ is a vector field taking values in the algebra of a (compact) gauge group
G. Here we will be primarily interested in the case of G = SU(2).

We will need a few important results on the structure of the Chern–Simons theory and its
solution.

• Following Witten [48], we realize the states on a closed 2D surface as a path integral over
a 3D volume.

• Witten showed that the Chern–Simons states on a spatial manifold � (which we will
take to be closed) are in one-to-one correspondence with the conformal blocks of a
Wess–Zumino–Witten (WZW) CFT.

• He also showed that the ground-state degeneracy depends on the level k and on the
topology of the surface �.

• The partition functions (i.e. the values of the path integral) depend on the matrix
elements of the modular S-matrix, e.g. the partition function on S3 with a Wilson loop in
representation ρj is

Z(S3, ρj ) = Sj

0 (4.2)

• Here the modular S-matrix defines how the degenerate ground states on a torus transform
under a modular transformation.

We will need some properties of the modular S matrix and of the conformal blocks. For
the gauge group U(1)m, n = 0, . . . , m − 1, the modular S matrix is

S[n′]
[n] = 1√

m
e2π inn′/m (4.3)

whereas for the gauge group SU(2)k , j, j ′ = 0, 1/2, . . . , k/2, the modular S matrix is

S
(k)
j

j ′
=
√

2

k + 2
sin

(
π

(2j + 1)(2j ′ + 1)

k + 2

)
. (4.4)

We also need the definition of the quantum dimensions dj :

dj = Sj

0

S00
, D ≡

√∑
j

|dj |2 = 1

S00
, (4.5)

which measure the rate of growth of the degenerate Hilbert spaces of particles labeled by the
representation ρj .

The Chern–Simons path integral (its partition function) on various manifolds can be
reduced to its computation on a sphere S3 using the method of (Chern–Simons) surgeries [48].
Using surgeries it is shown that if a 3-manifold M is the connected sum of two 3-manifolds
M1 and M2 joined along an S2, then the Chern–Simons partition functions on these manifolds
are related by

Z(M)Z(S3) = Z(M1)Z(M2). (4.6)
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Figure 4. Left: the cut-manifold defining the reduced density matrix ρA. Right: the foliated
manifold used to compute tr ρ3

A. Here β → ∞ is the inverse temperature.

In particular, if M is M1 and M2 joined along n S2’s, the resulting partition function is

Z(M) = Z(M1)Z(M2)

Z(S3)n
. (4.7)

We will compute the entanglement entropy for Chern–Simons theory using the path
integral approach of Calabrese and Cardy [14], suitably adapted for the system at hand by
Dong et al [57]. In other terms, one uses a path integral to compute the nth power of
the reduced density matrix. This leads to a ‘foliated’ 3D manifold shown in figure 4 (for
n = 3).

Let us consider first the simplest case, in which the spatial manifold is a sphere, � = S2,
and hence the spacetime manifold is just a 3-sphere, � × S1 ∼= S3. The Hilbert space on S3

is one dimensional. Using the method of surgeries Dong et al [57] considered the case of S2

with one A−B boundary (i.e. the observed region is a hemisphere). The two regions A and B
are two hemispheres (disks). The 3-geometry is a ball.

To construct tr ρ̂n
A we glue 2n such pieces together. When glued together, S2 rotated about

the axis which has the topology of S3. For n > 2, S2 is obtained by sequentially gluing 2n

disks, and we find that the (normalized) trace of ρn
A is

tr ρn
A(S2,1)

(tr ρA(S2,1))
n

= Z(S3)

(Z(S3))n
= (Z(S3))1−n = S1−n

00 . (4.8)

In the replica limit, n → 1, we obtain for the entanglement entropy

S
(S2,1)
A = lnS00 = −lnD (4.9)

which is the well-known result of Kitaev and Preskill [43], and Levin and Wen [44] for the
universal topological entanglement entropy. This result also holds for surfaces with arbitrary
topology provided the region being observed A is topologically trivial, regardless of the pure
state labeled by the representations ρj . For the case of a sphere S2 and a disconnected region

A with M boundaries we find S
(S2,M)
A = M lnS00 = −M lnD.

Let us compute the entanglement entropy for a Chern–Simons theory on the torus T 2 with
more than one A−B boundary. For a torus T 2 split into two regions with more than one (say
two) boundary, we have two cases, shown in figure 5.

For the trivial state (no Wilson loop) the entropy is the same in both cases,

SA(T 2, 2) = 2 lnS00. (4.10)
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Figure 5. Two cases for the torus.

If there is a Wilson loop with a non-trivial representation ρj , we obtain the same result for
the case depicted in Figure 5 (left). But, for the case of figure 5 (right), for a Wilson loop in
representation ρ we obtain instead

SA(T 2, 2, ρ) = 2 ln S0ρ. (4.11)

For a state which is a linear superposition, |ψ〉 =∑ρ ψρ |ρ〉, we find

SA(T 2, 2, ψ) = 2 lnS00 −
∑

ρ

d2
ρ

(
|ψρ |2
d2

ρ

ln
|ψρ |2
d2

ρ

)
. (4.12)

Clearly, the entanglement entropy now depends not only on the effective quantum dimension
D = S−1

00 but also on the quantum dimension of the excitation labeled by the representation
ρ, as well as on which particular linear combination of the degenerate vacua on the torus in
which the system is prepared.

Let us consider now the computation of the entanglement entropy in the presence of
quasiparticles, i.e. for a manifold with punctures each carrying a specific representation label.
Let us consider the case of four quasiparticles on S2: S2 with four punctures. We will consider
first the case of the Chern–Simons gauge theory SU(N)k , with N � 2 and k � 2, with two
punctures carrying fundamental α̂ and 2 anti-fundamental α̂∗ representations.

If there is only one puncture in A, we find [57] that the entanglement entropy is given by

SA = ln Sα̂
0 . (4.13)

On the other hand, if there are two punctures in A, we have two possibilities.

• Case I. There is a pair of α̂ and α̂∗ in A and in B. Each pair can fuse into the identity
or into the adjoint. For k � 2, the Hilbert space on S2 with two pairs of α̂ and α̂∗’s is
two dimensional. The entanglement entropy depends on the quantum dimensions of the
conformal block.

• Case II. There are two α̂’s in A and two α̂∗’s in B. The entropy now depends on which
channels (representation) the quasiparticles fuse and on the choice of state (conformal
block).

Let us consider first case I. We begin with a pure state

|φ〉 = a|φ1〉 + b|φ2〉 (4.14)

where the basis states |φ1〉 and |φ2〉 are shown in figure 6. For a mixed state with a reduced
density matrix

ρA = aa∗ρ11 + ab∗ρ12 + a∗bρ21 + bb∗ρ22 (4.15)

the entanglement entropy is

SA = lnS0
0 − λ1 ln λ1 − (d2

α̂ − 1
)
λ2 ln λ2 (4.16)
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bA B

a

a*

a*

a

bA B

a

a*

a*

a

Figure 6. Two states represented by Wilson lines connecting punctures: Case I.

where

λ1 = |adα̂ + b|2
|adα̂ + b|2 +

(
d2

α̂ − 1
)|b|2 , λ2 = |b|2

|adα̂ + b|2 +
(
d2

α̂ − 1
)|b|2 . (4.17)

However, |φ1〉 and |φ2〉 are not orthogonal:

〈φi |φj 〉 = S0
0dα̂

(
dα̂ 1
1 dα̂

)
. (4.18)

We can use instead an orthogonal basis(|φ′
1〉

|φ′
2〉
)

= 1

dα̂

√
S0

0
√

d2
α̂ − 1

(√
d2

α̂ − 1 0

−1 dα̂

)(|φ1〉
|φ2〉

)
(4.19)

where |φ′
1〉 and |φ′

2〉 are conformal blocks associated with the trivial and adjoint representation
θ̂ , respectively, which appear in α̂ × α̂∗. We have just calculated the fusion matrix. Here, |φ′

1〉
and |φ′

2〉 are the conformal blocks in one channel, 1

dα̂

√
S0

0
|φ2〉 and 1

dα̂

√
S0

0
√

d2
α̂−1

(−|φ2〉+dα̂|φ1〉)
are the blocks in the other channel. The fusion matrix F is given by

F

[
α α∗

α∗ α

]
= 1

dα̂

(
1

√
(dα̂)2 − 1√

(dα̂)2 − 1 −1

)
(4.20)

where dα̂ is the quantum dimension of the fundamental representation α̂, and
√

d2
α̂−1 ≡ dθ̂ is

the quantum dimension of the adjoint representation θ̂ .
Let us now turn to case II. We begin again with a pure state

|φ〉 = a|φ1〉 + b|φ2〉 (4.21)

with |φ1〉 and |φ2〉 depicted in figure 7. The computation is similar to case I except that now
the Wilson loops are braided and we now fuse two fundamentals, α. The representations
cut by the boundary are the symmetric σ̂ ≡ θ̂ and antisymmetric ω̂ ≡ 0 rank two of two
fundamentals. The entropy still has the same form with the quantum dimensions given by

dσ̂ = [N ][N + 1]

[2]
, dω̂ = [N ][N − 1]

[2]
(4.22)

where I use the quantum-group notation [x] ≡ qx/2−q−x/2

q1/2−q−1/2 , with q = e−2πi/(N+k). For SU(2)k
the fusion matrix is the same as before.
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Figure 7. Two states represented by Wilson lines connecting punctures: Case II.

4.1. Entanglement entropy of FQH states from Chern–Simons gauge theory

We end the discussion of the Chern–Simons theory with an application to the computation of
the entanglement entropy in FQH states.

4.1.1. Laughlin states: We begin with the case of the (Abelian) Laughlin states at filling
fraction ν = 1/m. Their effective field theory is, as we discussed earlier in this paper, a U(1)m
Abelian Chern–Simons gauge theory. The results we just derived tell us that for Laughlin
states the quantum dimensions of all its m quasiparticles are di = 1 (as they are all Abelian).
Hence, S00 = 1/

√
m, and the universal topological entanglement entropy is

SLaughlin = −ln
√

m. (4.23)

It is straightforward to show the the entanglement entropy for any Abelian FQH state is

SAbelian = − 1
2 ln g (4.24)

where g is the ground-state degeneracy of the Abelian FQH state on the torus.

4.1.2. Coset [ ̂SU(2)/U(1)]k theories: Chern–Simons theory whose CFT is the coset
[ ̂SU(2)/U(1)]2 describes the two-dimensional time-reversal breaking superconductors with
symmetry px + ipy . In some sense this is the simplest system with non-Abelian statistics.

Here we will consider the general case of the coset [ ̂SU(2)/U(1)]k .
In [57] it is shown that the modular S matrix for this coset is

S(�,r)
(�′,r ′) =

√
4

k(k + 2)
sin

[
π(� + 1)(�′ + 1)

k + 2

]
e−iπrr ′/k. (4.25)

For the case of most physical interest, we have k = 2, and the coset primaries may be taken
to be (0; 0), (1; 1) and (0; 2). This is in fact just the chiral Ising model with (0; 0) ∼ I ,
(1; 1) ∼ σ and (0; 2) ∼ ψ . The S-matrix for ( ̂SU(2)/U(1))2 is

Scoset
k=2 = 1

2

⎛⎜⎝ 1
√

2 1√
2 0 −√

2

1 −√
2 1

⎞⎟⎠ , (4.26)

which agrees with the results of [114].
Using the results we presented for Chern–Simons theory, we find that if the region of

observation is simply connected, then the entanglement entropy is S = lnS00 = −ln 2 (in this
case). Our expressions earlier in this section then yield the entanglement entropy in non-trivial
topologies and in the presence of quasiparticle.
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4.1.3. Moore–Read and Read–Rezayi FQH states—Pfaffian and generalized parafermion
states: We now turn to the Moore–Read and Read–Rezayi non-Abelian FQH states, and
their generalization. The filling factor of these states is ν = k/(Mk + 2); M even corresponds
to bosonic states and M odd to fermionic states [66]. These states are described by

̂[SU(2)/U(1)]k × Û (1) CFTs, with a suitably defined level for U(1). Examples of these
states are the well-known Moore–Read Pfaffian states. The fermionic state with k = 2 and
M = 1 has the filling factor 1/2 (5/2 in the experiment), and the related bosonic state at filling
factor ν = 1 has k = 2 and M = 0. The states with k > 2 are the Read–Rezayi parafermionic
states.

We will discuss both the general fermionic and bosonic states with fixed k and M. The
RCFT of interest is in all cases embedded in ̂(SU(2)/U(1))k × Û (1)k(Mk+2). We will consider
the cases of k even and k odd as their structure is somewhat different. Here we only present
details for the simpler cases. The details of the derivations for the general case are given in
[57].

By reasoning similar to the above, the resulting S-matrix can be obtained by multiplying
coset and U(1) characters. For the Pfaffian state k = 2, the coset is a Z2 parafermion. The
resulting S-matrix will, up to identifications, be given by

S(�,r;s)(�
′,r ′;s ′) = (Scoset

2

)
(�,r)

(�′,r ′)
(SU(1)4M+4)s

s ′
. (4.27)

Primaries of this theory will be given by products of the Z2 primaries {I, σ, ψ} with U(1)4M+4

primaries of the form O�/p. We seek a set of such operators that close under operator products
and are local with respect to a suitable extended current algebra, which will be generated by
J± ∼ ψ e±i

√
M+1φ , where ψ is the Majorana fermion of Z2. For simplicity, we will consider

two cases here, M = 0 (take p = 2, p′ = 1, radius R = 1) and M = 1 (take p = 4, p′ = 1,
radius R = √

1/2).
In the case of k = 2 and M = 0, we find the integer weight J± ∼ ψ e±iφ as suitable

extended currents. Requiring locality of operator products, we then find that the primaries of
this theory are given by I, ψ, σeiφ/2 (all others are related to these by action of J±). These in
fact are just the primaries of ŜU(2)2, as we should expect. This is the bosonic Pfaffian state.

In the case of k = 2 and M = 1 (the fermionic Pfaffian state), we find J± ∼ ψ e±i
√

2φ as
suitable extended currents [64]. Requiring locality of operator products, we then find that the
primaries of this theory are given by

I, ψ, σe±iφ/2
√

2, e±iφ/
√

2. (4.28)

This set closes under fusion (up to the action of J±). These operators have weights19 (0, 0; 0),
(0, 2; 0), (1, 1;±1) and (0, 0;±2) respectively. We can then read off the S-matrix:

S = 1

2
√

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1
√

2
√

2 1 1

1 1 −√
2 −√

2 1 1√
2 −√

2 0 0 +i
√

2 −i
√

2√
2 −√

2 0 0 −i
√

2 +i
√

2

1 1 i
√

2 −i
√

2 −1 −1

1 1 −i
√

2 +i
√

2 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.29)

from which one can read off that the total quantum dimension is D = 2
√

2.
We will now consider the interesting example of the parafermionic states at k = 3 and

M = 1: the Read–Rezayi parafermionic state for fermions at filling factor 2 + 2/5. The k = 3

19 The notation (�, r; s) represents the coset weights (�, r) and the U(1)-charge s.
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coset has primaries at (�, r) = (0, 0), (1,±1), (2, 0), (3,±1), which we will refer to as
I, σ±, ε, ψ± respectively. Explicitly, denoting sp ≡ sin(πp/5), we have

Scoset
k=3 = 2√

15

⎛⎜⎜⎜⎜⎜⎜⎜⎝

s1 s2 s2 s2 s1 s1

s2 e−iπ/3s1 e+iπ/3s1 −s1 −e−iπ/3s2 −e+iπ/3s2

s2 e+iπ/3s1 e−iπ/3s1 −s1 −e+iπ/3s2 −e−iπ/3s2

s2 −s1 −s1 −s1 s2 s2

s1 −e−iπ/3s2 −e+iπ/3s2 s2 −e−iπ/3s1 −e+iπ/3s1

s1 −e+iπ/3s2 −e−iπ/3s2 s2 −e+iπ/3s1 −e−iπ/3s1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (4.30)

For this case there is an extended algebra generated by the h = 3/2 operator Q+ = ψ+ e5iφ/
√

15,
where φ is a free boson of the U(1) theory that we are attaching. Representa-
tive primaries are (�, r; s) = (0, 0; 0), (3,−1; 1), (3, 1; 2), (0, 0; 3), (3,−1; 4) and
(�, r; s) = (2, 0; 0), (1,−1; 1), (1, 1; 2), (2, 0; 3), (1,−1; 4). One can check that
these have local OPEs with Q+ and are closed under fusion. As we will see, it is
convenient to group them into groups of k + 2 = 5, as given. The theory obtained
this way is actually an N = 2 superconformal theory, with supercharges Q±. Here
Q− = ψ− e−5iφ/

√
15 is the electron operator, and Q+ groups collections of conformal

primaries together, i.e. {(0, 0; 0), (3, 1; 5), (3,−1; 10)}, {(3,−1; 1), (0, 0; 6), (3, 1; 11)},
{(3, 1; 2), (3,−1; 7), (0, 0; 12)}, {(0, 0; 3), (3, 1; 8), (3,−1; 13)}, and {(3,−1; 4), (0, 0; 9),

(3, 1; 14)} and {(2, 0; 0), (1, 1; 5), (1,−1; 10)}, {(1,−1; 1), (2, 0; 6), (1, 1; 11)},
{(1, 1; 2), (1,−1; 7), (2, 0; 12)}, {(2, 0; 3), (1, 1; 8), (1,−1; 13)}, and {(1,−1; 4), (0, 0; 9),

(1, 1; 14)}. Each of these triplets represents a superconformal family. When we compute the
S-matrix with respect to the extended symmetry, we treat these groupings as one. That is,
computing the S-matrix element on the grouping gives a 3 × 3 identity matrix times a factor.
We collect those factors into the following S-matrix:

SFRR
k=3 = 2

5

(
sin(π/5) sin(2π/5)

sin(2π/5) −sin(π/5)

)
⊗

⎛⎜⎜⎜⎜⎝
1 1 1 1 1
1 ω2 ω4 ω1 ω3

1 ω4 ω3 ω2 ω1

1 ω1 ω2 ω3 ω4

1 ω3 ω1 ω4 ω2

⎞⎟⎟⎟⎟⎠ . (4.31)

where we have used the U(1) S-matrix is Ss
s ′ = 1√

15
e2π iss′/15. Above we used that the

notation is ωp = e2π ip/5. The coefficient out front is 2√
15

· 1√
15

· 15
5 , the factors being the

coefficients of the coset S-matrix, the U(1) S-matrix and the order of the automorphism (5 in
15), respectively. Note that it is easy to read off then the total quantum dimension

D = 1

S0
0 = 5

2 sin(π/5)
= D =

√
5 + 5(s2/s1)2 =

√
5(1 + φ2), (4.32)

where φ = (
√

5 + 1)/2 denotes the golden ratio.
In [57] it is shown that for general k and M, the primaries are the highest weight states of

the form

ψ(�,�−2[ n
M

]) exp

(
i
� + nk − (Mk + 2)

[
n
M

]
√

k(Mk + 2)
φ

)
(4.33)

or

ψ(�,�−2[ n−1
M

]) exp

(
i
� + nk − (Mk + 2)

[
n−1
M

]
√

k(Mk + 2)
φ

)
, (4.34)
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where ψ(�,r) are Zk-parafermion primaries, n and � are integers and [x] is the closest integer
to x. For general k the S-matrix is given by

S{�;n}{�
′;n′} = 2√

(k + 2)(Mk + 2)
sin

[
π(� + 1)(�′ + 1)

k + 2

]
× exp

(
π i(−M��′ + 2�n′ + 2�′n + 2knn′)

Mk + 2

)
. (4.35)

One can read off from this the total quantum dimension D for all M and k, since

1

D
= S0

0 = 2√
(k + 2)(Mk + 2)

sin

(
π

k + 2

)
(4.36)

from where the value of the topological entanglement entropy for a simply connected region
can be obtained20.

5. Outlook

We discussed the behavior of the entanglement entropy near quantum phase transitions and
in topological phases. In some special cases, the entanglement entropy of 2D QCPs with
conformally invariant wavefunctions has a universal logarithmic terms. However, if the
logarithmic term is absent, the O(1) term is universal. We also showed that in a topological
phase the finite term in the entanglement entropy is a universal property of the phase, which
in general is different from its value at the QCP.

We computed the topological entanglement entropy for Chern–Simons gauge theories.
The entanglement entropy of Abelian and non-Abelian FQH states is given in terms of the
modular S matrix for the effective CS theory. This requires to glue U(1) charge sector and
the coset (SU(2)/U(1))k neutral sector.

For a simply connected region it is universal and depends only on the total quantum
dimension. For regions which are not simply connected, the entropy is additive. The entropy
of disjoint regions on a torus depends on the effective quantum dimension and on the state on
the torus. The entropy for a simply connected region on the sphere with four quasiparticles
(punctures) depends on the conformal block. The entropy depends on the quantum dimensions
and on the particular state that is chosen. The change of basis depends on the fusion matrix
and on the conformal weights as well.

These results suggest that it may be possible to determine the structure of the topological
field theory by means of entanglement entropy measurements.

We close with some comments on the question of how (or even whether) the entanglement
entropy may be measured experimentally. Our results indicate that in the case of the conformal
quantum critical points in 2D there is an intimate relationship between the entanglement
entropy and the Affleck–Ludwig vacuum degeneracy of the associated Euclidean CFT. On
the other hand, the work by Fendley, Fisher and Nayak on entanglement at point contacts
of the non-Abelian FQH states [114] also relates the entanglement entropy (change) of the
bulk topological fluid to the (change) of the Affleck–Ludwig entropy of the point contact, a
property of the edge states. These seemingly unrelated results suggest that there may be a
deeper connection. More important perhaps changes in the bulk entanglement entropy can be
measured by monitoring the properties of a suitably defined point contact. Recent work by
Klich and Levitov [116, 117] in the context of a simple (and hence solvable) system of free

20 This result for the total quantum dimension for (M, k) Read–Rezayi states was also obtained by Haque et al [109],
and the cases M = 0, 1 were presented by Fendley et al [114].
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fermions suggests that this may be possible. We have preliminary results that support this idea
in a more general context [118].

Note that some time after this paper was submitted for publication we became aware of
the unpublished work by Stephan and collaborators [118] in which Shannon entropy of the
quantum dimer model at the RK point is computed partly analytically and mostly numerically.
These authors find a somewhat different result for the finite universal piece derived by Hsu
and co-workers [39] and discussed in some detail in this paper. Stephan et al speculate that
the difference between the two results may be due to the formalism used by Hsu et al which
they suggest may not have used the correct boundary conditions. It appears, however, that
Stephan et al have interpreted incorrectly the theory of Hsu et al as the results published there
are indeed correct as they obtain the same answer using different computations both of which
account correctly for the compactified nature of the degree of freedom. It is possible that
the difference may more likely stem from the numerics of [118] as it is very hard to reliably
determine such finite terms due to ambiguities in the subtraction procedure.
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[104] Francesco P D, Mathieu P and Sénéchal D 1997 Conformal Field Theory (New York: Springer)
[105] Fendley P, Saleur H and Warner N P 1994 Nucl. Phys. B 430[FS] 577
[106] Castelnovo C and Chamon C 2008 Phys. Rev. B 77 054433
[107] Verlinde E P 1988 Nucl. Phys. B 300 360
[108] Bonderson P, Shtengel K and Slingerland J K 2006 Phys. Rev. Lett. 97 016401
[109] Haque M, Zozulya O S and Schoutens K 2007 Phys. Rev. Lett. 98 060401
[110] Zozulya O S, Haque M, Schoutens K and Rezayi E H 2007 Phys. Rev. B 76 125310
[111] Haque M, Zozulya O S and Schoutens K 2009 Phys. Rev. A 78 042326
[112] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[113] Zozulya O S, Haque M and Regnault N 2009 Phys. Rev. B 79 045409
[114] Fendley P, Fisher M P A and Nayak C 2007 J. Stat. Phys. 126 1111
[115] Klich I and Levitov L 2009 Phys. Rev. Lett. 102 100502
[116] Klich I and Levitov L 2009 Advances in Theoretical Physics: Landao Memorial Conference (AIP Proceedings)

ed V Lebedev and M V Feigelman (College Park, Maryland: AIP) pp 36–45
[117] Hsu B, Grosfeld E and Fradkin E 2009 Quantum noise and entanglement generated by a local quantum quench

arXiv:0808.2622
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